Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions
نویسندگان
چکیده
Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.
منابع مشابه
Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances
Although phosphate and carbonate are important constituents in ancient and modern environments, it is not yet clear their biogeochemical relationships and their mechanisms of formation. Microbially mediated carbonate formation has been widely studied whereas little is known about the formation of phosphate minerals. Here we report that a new bacterial strain, Tessarococcus lapidicaptus, isolate...
متن کاملThe Association of Carbonate Minerals to Acidic Environments: a Possible Biosignature for Mars
Introduction: Carbonate production is thermodynamically inhibited under low-pH conditions. More specifically, in most terrestrial environments, neither abiotic or biotic pathways favor the production of carbonates below a pH of ~4.5. However, carbonate minerals have been recognized associated to extremely acidic environments of Río Tinto, Spain. The mineralogical similarity of these deposits at...
متن کاملReoxidation of bioreduced uranium under reducing conditions.
Nuclear weapons and fuel production have left many soils and sediments contaminated with toxic levels of uranium (U). Although previous short-term experiments on microbially mediated U(VI) reduction have supported the prospect of immobilizing the toxic metal through formation of insoluble U(IV) minerals, our longer-term (17 months) laboratory study showed that microbial reduction of U can be tr...
متن کاملFate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.
Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe mineral...
متن کاملSchwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix.
A new acidophilic iron-oxidizing strain (C25) belonging to the novel genus Acidithrix was isolated from pelagic iron-rich aggregates ('iron snow') collected below the redoxcline of an acidic lignite mine lake. Strain C25 catalysed the oxidation of ferrous iron [Fe(II)] under oxic conditions at 25 °C at a rate of 3.8 mM Fe(II) day(-1) in synthetic medium and 3.0 mM Fe(II) day(-1) in sterilized l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014